进制的减法运算的原理:
1、在计算机内部做减法时是用加法做的(-123就是+(-123))。n个1位的全加器(FA)可级联成一个n位的行波进位加减器。M为方式控制输入线,当M=0时,作加法(A+B)运算;当M=1时,作减法(A-B)运算,在后一种情况下,A-B运算转化成[A]补+[-B]补运算,求补过程由B+1来实现。
2、全加器的起始进位输入端被连接到功能方式线M上,作减法时M=1,相当于在加法器的最低位上加1。另外,还表示出单符号位法的溢出检测逻辑;当Cn=Cn-1时,运算无溢出;而当Cn≠Cn-1时,运算有溢出,经异或门产生溢出信号。
扩展资料
二进制法则
1、二进制的减法:0-0=0,0-1=1(向高位借位) 1-0=1,1-1=0 (模二加运算或异或运算) ;
2、二进制的运算算术运算二进制的加法:0+0=0,0+1=1 ,1+0=1, 1+1=10(向高位进位);即7=111 10=1010 3=11
3、二进制的乘法:0 * 0 = 0 0 * 1 = 0,1 * 0 = 0,1 * 1 = 1 二进制的除法:0÷0 = 0,0÷1 = 0,1÷0 = 0 (无意义),1÷1 = 1 ;
4、逻辑运算二进制的或运算:遇1得1 二进制的与运算:遇0得0 二进制的非运算:各位取反。
参考资料来源:百度百科—二进制运算法则
原理是根据“借一有二”的规则,二进制数减法的法则为:
0-0=0
1-1=0
1-0=1
0-1=1 (借位为1)
例如:1101减去1011的过程如下:
位运算符:&(按位与)|(按位或)^(按位异或)~(按位取反)<<(按位左移)>>(有符号的按位右移)>>>(无符号的按位右移)。
二进制同样是“位值制”。同一个数码1,在不同数位上表示的数值是不同的。如11111,从右往左数,第一位的1就是一,第二位的1表示二,第三位的1表示四,第四位的1表示八,第五位的1表示十六。
二进制的原理如下:
一、加法法则: 0+0=0,0+1=1,1+0=1,1+1=0
二、减法,当需要向上一位借数时,必须把上一位的1看成下一位的(2)10。减法法则: 0-0 =0,1-0=1,1-1=0,0-1=1 有借位,借1当(10) 看成 2 则 0 - 1 - 1 = 0 有借位 1 - 1 - 1 = 1 有借位。
三、乘法法则: 0×0=0,0×1=0,1×0=0,1×1=1
四、除法应注意: 0÷0 =0(无意义),0÷1 =0,1÷0 =0(无意义)
除法法则: 0÷1=0,1÷1=1
扩展资料
二进制就是一直循环,直到达到精度限制才停止(所以,计算机保存的小数一般会有误差,所以在编程中,要想比较两个小数是否相等,只能比较某个精度范围内是否相等。)。这时,十进制的0.65,用二进制就可以表示为:0.1010011。
在现实生活和记数器中,如果表示数的“器件”只有两种状态,如电灯的“亮”与“灭”,开关的“开”与“关”。一种状态表示数码0,另一种状态表示数码1,1加1应该等于2,因为没有数码2,只能向上一个数位进一,就是采用“满二进一”的原则,这和十进制是采用“满十进一”原则完全相同。