证明:∵∠BAC=90°,AD⊥BC,∴△CBA∽△ABD,∴ AB BD = AC AD ,∴AB:AC=BD:AD①,∴∠C=∠FAD,又∵E为AC的中点,AD⊥BC,∴ED= 1 2 AC=EC,∴∠C=∠EDC,又∵∠EDC=∠FDB,∴∠FAD=∠FDB,∠F为公共角,∴△DBF∽△ADF,∴BD:AD=DF:AF②,由①②得, AB AC = DF AF .