若不等式(1+a⼀t)in(1+t)>a对任意正实数t恒成立,求a的取值范围

2025-05-08 03:06:30
推荐回答(1个)
回答1:

|1+t|+|1-t| >= |1+t+1-t| = 2.

x<=0时,|2x|+|x-1| = -2x + 1-x = 1-3x
要使得对任意实数t,都有 1-3x <= |1+t| + |1-t|,
则,必须 1-3x <= 2 <= |1+t| + |1-t|,
也即,0 >= x >= -1/3.

0 < x <= 1时,|2x|+|x-1| = 2x + 1-x = 1+x
要使得对任意实数t,都有 1+x <= |1+t| + |1-t|,
则,必须 1+x <= 2 <= |1+t| + |1-t|,
也即,0 < x <= 1.

x > 1时,|2x|+|x-1| = 2x + x-1 = 3x-1
要使得对任意实数t,都有 3x-1 <= |1+t| + |1-t|,
则,必须 3x-1 <= 2 <= |1+t| + |1-t|,
也即,x <= 1.矛盾。

综合有,
不等式|1+t|+|1-t|大于等于|2x|+|x-1|对任意实数t恒成立时,实数x的取值范围为 -1/3 <= x <= 1.