(1)证明:∵DE⊥DB,⊙O是Rt△BDE的外接圆.
∴BE是⊙O的直径,点O是BE的中点,连接OD.
∵∠C=90°
∴∠DBC+∠BDC=90°
又∵BD为∠ABC的平分线
∴∠ABD=∠DBC
∵OB=OD
∴∠ABD=∠ODB
∴∠ODB+∠BDC=90°
∴∠ODC=90°,
又∵OD是⊙O的半径
∴AC是⊙O的切线.
(2)解:设⊙O的半径为r,
在Rt△ABC中,AB2=BC2+CA2=92+122=225
∴AB=15.
∵∠A=∠A,∠ADO=∠C=90°
∴△ADO∽△ACB.
∴
=AO AB
OD BC
∴
=15?r 15
r 9
∴r=
45 8
∴BE=2r=
,45 4
又∵BE是⊙O的直径
∴∠BFE=90°
∴△BEF∽△BAC
∴
=EF AC
=BE BA
.3 4